| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- import os
- import torch
- from datasets import load_dataset
- from transformers import (
- AutoTokenizer,
- AutoModelForCausalLM,
- TrainingArguments,
- BitsAndBytesConfig
- )
- from peft import (
- LoraConfig,
- get_peft_model,
- prepare_model_for_kbit_training,
- )
- from trl import SFTTrainer
-
- # ----------------------------
- # Environment safety (Windows)
- # ----------------------------
- os.environ["TORCHDYNAMO_DISABLE"] = "1"
-
- # ----------------------------
- # Global configuration
- # ----------------------------
- MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
- OUTPUT_DIR = "./qwen2.5-7b-uk-fr-lora"
- DATA_FILE = "paires_clean.json"
- MAX_SEQ_LENGTH = 1024
-
- print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n")
-
- # ----------------------------
- # [1/7] Tokenizer
- # ----------------------------
- print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
- tokenizer = AutoTokenizer.from_pretrained(
- MODEL_NAME,
- trust_remote_code=True
- )
-
- tokenizer.pad_token = tokenizer.eos_token
- tokenizer.model_max_length = MAX_SEQ_LENGTH
-
- print("Tokenizer loaded.")
- print(f"Pad token id: {tokenizer.pad_token_id}")
- print(f"Max sequence length: {tokenizer.model_max_length}")
-
- # ----------------------------
- # [2/7] Model loading (QLoRA)
- # ----------------------------
- print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (QLoRA)...")
- model = AutoModelForCausalLM.from_pretrained(
- MODEL_NAME,
- load_in_4bit=True,
- device_map="auto",
- dtype=torch.float16,
- trust_remote_code=True,
- )
- print("Model loaded.")
-
- # ----------------------------
- # [3/7] Prepare model for k-bit training
- # ----------------------------
- print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
- model = prepare_model_for_kbit_training(model)
-
- model.gradient_checkpointing_enable(
- gradient_checkpointing_kwargs={"use_reentrant": False}
- )
-
- print("Model prepared for k-bit training.")
- print("Gradient checkpointing enabled (non-reentrant).")
-
- # ----------------------------
- # [4/7] LoRA configuration
- # ----------------------------
- print(f"{80 * '_'}\n[4/7] Configuring LoRA adapters...")
- lora_config = LoraConfig(
- r=32,
- lora_alpha=64,
- lora_dropout=0.02,
- bias="none",
- task_type="CAUSAL_LM",
- target_modules=[
- "q_proj", "k_proj", "v_proj", "o_proj",
- "gate_proj", "up_proj", "down_proj"
- ],
-
- )
-
- model = get_peft_model(model, lora_config)
- model.print_trainable_parameters()
-
- print("LoRA adapters successfully attached.")
-
- # ----------------------------
- # [5/7] Dataset loading & formatting
- # ----------------------------
- print(f"{80 * '_'}\n[5/7] Loading dataset from JSON file...")
- dataset = load_dataset(
- "json",
- data_files=DATA_FILE
- )
-
- print(f"Dataset loaded with {len(dataset['train'])} samples.")
-
- print("Formatting dataset for Ukrainian → French translation...")
-
- def format_prompt(example):
- return {
- "text": (
- "<|user|>\n"
- "Translate the following Ukrainian text into French.\n"
- f"Ukrainian: {example['text']}\n"
- "<|assistant|>\n"
- f"{example['translation']}"
- )
- }
-
- dataset = dataset.map(
- format_prompt,
- remove_columns=dataset["train"].column_names
- )
-
- print("Dataset formatting completed.")
- print(f"Example prompt:\n{dataset['train'][0]['text']}")
-
- # ----------------------------
- # [6/7] Training arguments
- # ----------------------------
- print(f"{80 * '_'}\n[6/7] Initializing training arguments...")
- training_args = TrainingArguments(
- output_dir=OUTPUT_DIR,
- per_device_train_batch_size=1,
- gradient_accumulation_steps=8,
- learning_rate=1e-4,
- num_train_epochs=3,
- fp16=False,
- bf16=False,
- optim="paged_adamw_32bit",
- logging_steps=10,
- save_steps=500,
- save_total_limit=2,
- report_to="none",
- )
-
- print("Training arguments ready.")
- print(f"Output directory: {OUTPUT_DIR}")
- print(f"Epochs: {training_args.num_train_epochs}")
- print(f"Effective batch size: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}")
-
- # ----------------------------
- # Trainer
- # ----------------------------
- print("Initializing SFTTrainer...")
- trainer = SFTTrainer(
- model=model,
- train_dataset=dataset["train"],
- tokenizer=tokenizer,
- args=training_args,
- )
- print("Trainer initialized.")
-
- # ----------------------------
- # [7/7] Training
- # ----------------------------
- print(f"{80 * '_'}\n[7/7] Starting training...")
- try:
- trainer.train(resume_from_checkpoint=True)
- except Exception as e:
- print("No checkpoint found or resume failed, starting fresh training.")
- print(f"Reason: {e}")
- trainer.train()
-
- print("Training completed successfully.")
-
- # ----------------------------
- # Save LoRA adapter
- # ----------------------------
- print(f"{80 * '_'}\nSaving LoRA adapter and tokenizer...")
- trainer.model.save_pretrained(OUTPUT_DIR)
- tokenizer.save_pretrained(OUTPUT_DIR)
-
- print("\n=== Fine-tuning finished ===")
- print(f"LoRA adapter saved in: {OUTPUT_DIR}")
|