Script python permettant de traduire un long texte
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

finetunning.py 4.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. import os
  2. import torch
  3. from datasets import load_dataset
  4. from transformers import (
  5. AutoTokenizer,
  6. AutoModelForCausalLM,
  7. TrainingArguments,
  8. BitsAndBytesConfig
  9. )
  10. from peft import (
  11. LoraConfig,
  12. get_peft_model,
  13. prepare_model_for_kbit_training,
  14. )
  15. from trl import SFTTrainer
  16. # ----------------------------
  17. # Environment safety (Windows)
  18. # ----------------------------
  19. os.environ["TORCHDYNAMO_DISABLE"] = "1"
  20. # ----------------------------
  21. # Global configuration
  22. # ----------------------------
  23. MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
  24. OUTPUT_DIR = "./qwen2.5-7b-uk-fr-lora"
  25. DATA_FILE = "paires_clean.json"
  26. MAX_SEQ_LENGTH = 1024
  27. print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n")
  28. # ----------------------------
  29. # [1/7] Tokenizer
  30. # ----------------------------
  31. print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
  32. tokenizer = AutoTokenizer.from_pretrained(
  33. MODEL_NAME,
  34. trust_remote_code=True
  35. )
  36. tokenizer.pad_token = tokenizer.eos_token
  37. tokenizer.model_max_length = MAX_SEQ_LENGTH
  38. print("Tokenizer loaded.")
  39. print(f"Pad token id: {tokenizer.pad_token_id}")
  40. print(f"Max sequence length: {tokenizer.model_max_length}")
  41. # ----------------------------
  42. # [2/7] Model loading (QLoRA)
  43. # ----------------------------
  44. print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (QLoRA)...")
  45. model = AutoModelForCausalLM.from_pretrained(
  46. MODEL_NAME,
  47. load_in_4bit=True,
  48. device_map="auto",
  49. dtype=torch.float16,
  50. trust_remote_code=True,
  51. )
  52. print("Model loaded.")
  53. # ----------------------------
  54. # [3/7] Prepare model for k-bit training
  55. # ----------------------------
  56. print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
  57. model = prepare_model_for_kbit_training(model)
  58. model.gradient_checkpointing_enable(
  59. gradient_checkpointing_kwargs={"use_reentrant": False}
  60. )
  61. print("Model prepared for k-bit training.")
  62. print("Gradient checkpointing enabled (non-reentrant).")
  63. # ----------------------------
  64. # [4/7] LoRA configuration
  65. # ----------------------------
  66. print(f"{80 * '_'}\n[4/7] Configuring LoRA adapters...")
  67. lora_config = LoraConfig(
  68. r=32,
  69. lora_alpha=64,
  70. lora_dropout=0.02,
  71. bias="none",
  72. task_type="CAUSAL_LM",
  73. target_modules=[
  74. "q_proj", "k_proj", "v_proj", "o_proj",
  75. "gate_proj", "up_proj", "down_proj"
  76. ],
  77. )
  78. model = get_peft_model(model, lora_config)
  79. model.print_trainable_parameters()
  80. print("LoRA adapters successfully attached.")
  81. # ----------------------------
  82. # [5/7] Dataset loading & formatting
  83. # ----------------------------
  84. print(f"{80 * '_'}\n[5/7] Loading dataset from JSON file...")
  85. dataset = load_dataset(
  86. "json",
  87. data_files=DATA_FILE
  88. )
  89. print(f"Dataset loaded with {len(dataset['train'])} samples.")
  90. print("Formatting dataset for Ukrainian → French translation...")
  91. def format_prompt(example):
  92. return {
  93. "text": (
  94. "<|user|>\n"
  95. "Translate the following Ukrainian text into French.\n"
  96. f"Ukrainian: {example['text']}\n"
  97. "<|assistant|>\n"
  98. f"{example['translation']}"
  99. )
  100. }
  101. dataset = dataset.map(
  102. format_prompt,
  103. remove_columns=dataset["train"].column_names
  104. )
  105. print("Dataset formatting completed.")
  106. print(f"Example prompt:\n{dataset['train'][0]['text']}")
  107. # ----------------------------
  108. # [6/7] Training arguments
  109. # ----------------------------
  110. print(f"{80 * '_'}\n[6/7] Initializing training arguments...")
  111. training_args = TrainingArguments(
  112. output_dir=OUTPUT_DIR,
  113. per_device_train_batch_size=1,
  114. gradient_accumulation_steps=8,
  115. learning_rate=1e-4,
  116. num_train_epochs=3,
  117. fp16=False,
  118. bf16=False,
  119. optim="paged_adamw_32bit",
  120. logging_steps=10,
  121. save_steps=500,
  122. save_total_limit=2,
  123. report_to="none",
  124. )
  125. print("Training arguments ready.")
  126. print(f"Output directory: {OUTPUT_DIR}")
  127. print(f"Epochs: {training_args.num_train_epochs}")
  128. print(f"Effective batch size: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}")
  129. # ----------------------------
  130. # Trainer
  131. # ----------------------------
  132. print("Initializing SFTTrainer...")
  133. trainer = SFTTrainer(
  134. model=model,
  135. train_dataset=dataset["train"],
  136. tokenizer=tokenizer,
  137. args=training_args,
  138. )
  139. print("Trainer initialized.")
  140. # ----------------------------
  141. # [7/7] Training
  142. # ----------------------------
  143. print(f"{80 * '_'}\n[7/7] Starting training...")
  144. try:
  145. trainer.train(resume_from_checkpoint=True)
  146. except Exception as e:
  147. print("No checkpoint found or resume failed, starting fresh training.")
  148. print(f"Reason: {e}")
  149. trainer.train()
  150. print("Training completed successfully.")
  151. # ----------------------------
  152. # Save LoRA adapter
  153. # ----------------------------
  154. print(f"{80 * '_'}\nSaving LoRA adapter and tokenizer...")
  155. trainer.model.save_pretrained(OUTPUT_DIR)
  156. tokenizer.save_pretrained(OUTPUT_DIR)
  157. print("\n=== Fine-tuning finished ===")
  158. print(f"LoRA adapter saved in: {OUTPUT_DIR}")