Alex 6 дней назад
Родитель
Сommit
fa3ad61dd7
1 измененных файлов: 20 добавлений и 14 удалений
  1. 20
    14
      Finetunning/finetunning.py

+ 20
- 14
Finetunning/finetunning.py Просмотреть файл

# ---------------------------- # ----------------------------
# [2/7] Quantization config (QLoRA) # [2/7] Quantization config (QLoRA)
# ---------------------------- # ----------------------------
print(f"{80 * '_'}\n[2/7] Configuring 4-bit quantization (BitsAndBytes)...")
print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (optimized QLoRA)...")

assert torch.cuda.is_available(), "CUDA GPU not detected!"
print(f"Using GPU: {torch.cuda.get_device_name(0)}")

bnb_config = BitsAndBytesConfig( bnb_config = BitsAndBytesConfig(
load_in_4bit=True, load_in_4bit=True,
bnb_4bit_quant_type="nf4", bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True, bnb_4bit_use_double_quant=True,
) )


print("4-bit NF4 quantization configured.")

print("Loading model...")
model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, MODEL_NAME,
device_map="auto",
device_map="cuda", # 🔥 SAFE
quantization_config=bnb_config, quantization_config=bnb_config,
dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True, trust_remote_code=True,
) )
print("Model loaded successfully.")

print("Model loaded successfully in 4-bit mode on GPU.")



# ---------------------------- # ----------------------------
# [3/7] Prepare model for k-bit training # [3/7] Prepare model for k-bit training


def format_prompt(example): def format_prompt(example):
return { return {
"text": (
"<|user|>\n"
"text": ("<|user|>\n"
"Translate the following Ukrainian text into French.\n" "Translate the following Ukrainian text into French.\n"
f"Ukrainian: {example['text']}\n" f"Ukrainian: {example['text']}\n"
"<|assistant|>\n" "<|assistant|>\n"
save_steps=500, save_steps=500,
save_total_limit=2, save_total_limit=2,
report_to="none", report_to="none",
dataloader_pin_memory=False,
) )


print("Training arguments ready.") print("Training arguments ready.")
print(f"Output directory: {OUTPUT_DIR}") print(f"Output directory: {OUTPUT_DIR}")
print(f"Epochs: {training_args.num_train_epochs}") print(f"Epochs: {training_args.num_train_epochs}")
print(
f"Effective batch size: "
print(f"Effective batch size: "
f"{training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}" f"{training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}"
) )


trainer = SFTTrainer( trainer = SFTTrainer(
model=model, model=model,
train_dataset=dataset["train"], train_dataset=dataset["train"],
tokenizer=tokenizer,
processing_class=tokenizer,
args=training_args, args=training_args,
) )
print("Trainer initialized.") print("Trainer initialized.")
# ---------------------------- # ----------------------------
print(f"{80 * '_'}\n[7/7] Starting training...") print(f"{80 * '_'}\n[7/7] Starting training...")
try: try:
trainer.train(resume_from_checkpoint=True)
train_output = trainer.train(resume_from_checkpoint=True)
except Exception as e: except Exception as e:
print("No checkpoint found or resume failed, starting fresh training.") print("No checkpoint found or resume failed, starting fresh training.")
print(f"Reason: {e}") print(f"Reason: {e}")
trainer.train()
train_output = trainer.train()


print("\n=== Training summary ===")
print(f"Global steps: {train_output.global_step}")
print(f"Training loss: {train_output.training_loss}")
print(f"Metrics: {train_output.metrics}")
print("Training completed successfully.") print("Training completed successfully.")


# ---------------------------- # ----------------------------

Загрузка…
Отмена
Сохранить