Sfoglia il codice sorgente

utilisation du GPU

main
Alex 6 giorni fa
parent
commit
fa3ad61dd7
1 ha cambiato i file con 20 aggiunte e 14 eliminazioni
  1. 20
    14
      Finetunning/finetunning.py

+ 20
- 14
Finetunning/finetunning.py Vedi File

@@ -48,7 +48,11 @@ print(f"Max sequence length: {tokenizer.model_max_length}")
# ----------------------------
# [2/7] Quantization config (QLoRA)
# ----------------------------
print(f"{80 * '_'}\n[2/7] Configuring 4-bit quantization (BitsAndBytes)...")
print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (optimized QLoRA)...")

assert torch.cuda.is_available(), "CUDA GPU not detected!"
print(f"Using GPU: {torch.cuda.get_device_name(0)}")

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
@@ -56,17 +60,16 @@ bnb_config = BitsAndBytesConfig(
bnb_4bit_use_double_quant=True,
)

print("4-bit NF4 quantization configured.")

print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
device_map="cuda", # 🔥 SAFE
quantization_config=bnb_config,
dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True,
)
print("Model loaded successfully.")

print("Model loaded successfully in 4-bit mode on GPU.")


# ----------------------------
# [3/7] Prepare model for k-bit training
@@ -119,8 +122,7 @@ print("Formatting dataset for Ukrainian → French translation...")

def format_prompt(example):
return {
"text": (
"<|user|>\n"
"text": ("<|user|>\n"
"Translate the following Ukrainian text into French.\n"
f"Ukrainian: {example['text']}\n"
"<|assistant|>\n"
@@ -154,13 +156,13 @@ training_args = TrainingArguments(
save_steps=500,
save_total_limit=2,
report_to="none",
dataloader_pin_memory=False,
)

print("Training arguments ready.")
print(f"Output directory: {OUTPUT_DIR}")
print(f"Epochs: {training_args.num_train_epochs}")
print(
f"Effective batch size: "
print(f"Effective batch size: "
f"{training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}"
)

@@ -171,7 +173,7 @@ print("Initializing SFTTrainer...")
trainer = SFTTrainer(
model=model,
train_dataset=dataset["train"],
tokenizer=tokenizer,
processing_class=tokenizer,
args=training_args,
)
print("Trainer initialized.")
@@ -181,12 +183,16 @@ print("Trainer initialized.")
# ----------------------------
print(f"{80 * '_'}\n[7/7] Starting training...")
try:
trainer.train(resume_from_checkpoint=True)
train_output = trainer.train(resume_from_checkpoint=True)
except Exception as e:
print("No checkpoint found or resume failed, starting fresh training.")
print(f"Reason: {e}")
trainer.train()
train_output = trainer.train()

print("\n=== Training summary ===")
print(f"Global steps: {train_output.global_step}")
print(f"Training loss: {train_output.training_loss}")
print(f"Metrics: {train_output.metrics}")
print("Training completed successfully.")

# ----------------------------

Loading…
Annulla
Salva