소스 검색

nettoyage dataset

main
Alex 1 주 전
부모
커밋
aee2716a41
3개의 변경된 파일213개의 추가작업 그리고 42개의 파일을 삭제
  1. 144
    0
      Finetunning/cleanDataSet.py
  2. 61
    40
      Finetunning/finetunning.py
  3. 8
    2
      README.md

+ 144
- 0
Finetunning/cleanDataSet.py 파일 보기

@@ -0,0 +1,144 @@
import json
import unicodedata
import re
from collections import OrderedDict

# ----------------------------
# Configuration
# ----------------------------
INPUT_FILE = "paires.json"
OUTPUT_FILE = "paires_clean.json"

MIN_TOKENS = 5
MAX_TOKENS = 200
MIN_QUALITY_SCORE = 0.60

print("=== Dataset cleaning + quality scoring started ===")

# ----------------------------
# Normalization helpers
# ----------------------------
def normalize_text(text: str) -> str:
text = unicodedata.normalize("NFKC", text)
text = re.sub(r"\s+", " ", text).strip()
text = text.replace("’", "'").replace("‘", "'").replace("“", '"').replace("”", '"')
return text


def token_count(text: str) -> int:
return len(text.split())


# ----------------------------
# Quality scoring
# ----------------------------
def length_ratio_score(src_len, tgt_len):
"""
Ideal ratio FR/UK ≈ 0.9 – 1.3
"""
ratio = tgt_len / max(src_len, 1)

if ratio < 0.5 or ratio > 2.0:
return 0.0
elif 0.75 <= ratio <= 1.5:
return 1.0
else:
return max(0.0, 1.0 - abs(ratio - 1.1))


def lexical_density_score(text):
"""
Penalize very repetitive or trivial translations
"""
tokens = text.split()
if not tokens:
return 0.0
unique_ratio = len(set(tokens)) / len(tokens)
return min(1.0, unique_ratio * 1.5)


def quality_score(src, tgt):
src_len = token_count(src)
tgt_len = token_count(tgt)

l_score = length_ratio_score(src_len, tgt_len)
d_score = lexical_density_score(tgt)

return 0.7 * l_score + 0.3 * d_score


# ----------------------------
# Load + clean + score
# ----------------------------
unique_sources = OrderedDict()

stats = {
"total": 0,
"removed_length": 0,
"removed_duplicates": 0,
"removed_quality": 0,
}

with open(INPUT_FILE, "r", encoding="utf-8") as f:
for line in f:
stats["total"] += 1
item = json.loads(line)

src = normalize_text(item["text"])
tgt = normalize_text(item["translation"])

src_len = token_count(src)
tgt_len = token_count(tgt)

# Length filtering
if not (MIN_TOKENS <= src_len <= MAX_TOKENS):
stats["removed_length"] += 1
continue

if not (MIN_TOKENS <= tgt_len <= MAX_TOKENS):
stats["removed_length"] += 1
continue

# Deduplication
if src in unique_sources:
stats["removed_duplicates"] += 1
continue

# Quality score
q_score = quality_score(src, tgt)
if q_score < MIN_QUALITY_SCORE:
stats["removed_quality"] += 1
continue

unique_sources[src] = {
"translation": tgt,
"quality_score": round(q_score, 3)
}

# ----------------------------
# Report
# ----------------------------
print(f"Total lines processed: {stats['total']}")
print(f"Removed (length): {stats['removed_length']}")
print(f"Removed (duplicates): {stats['removed_duplicates']}")
print(f"Removed (quality): {stats['removed_quality']}")
print(f"Final kept pairs: {len(unique_sources)}")

# ----------------------------
# Save cleaned dataset
# ----------------------------
with open(OUTPUT_FILE, "w", encoding="utf-8") as f:
for src, data in unique_sources.items():
json.dump(
{
"text": src,
"translation": data["translation"],
"quality_score": data["quality_score"],
},
f,
ensure_ascii=False
)
f.write("\n")

print(f"=== Cleaning completed ===")
print(f"Clean dataset saved to: {OUTPUT_FILE}")

+ 61
- 40
Finetunning/finetunning.py 파일 보기

@@ -5,6 +5,7 @@ from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
BitsAndBytesConfig
)
from peft import (
LoraConfig,
@@ -19,76 +20,86 @@ from trl import SFTTrainer
os.environ["TORCHDYNAMO_DISABLE"] = "1"

# ----------------------------
# Model configuration
# Global configuration
# ----------------------------
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
OUTPUT_DIR = "./qwen2.5-7b-uk-fr-lora"
DATA_FILE = "paires_clean.json"
MAX_SEQ_LENGTH = 1024

print(f"=== Starting fine-tuning script {MODEL_NAME} ===")
print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n")

# ----------------------------
# [1/7] Tokenizer
# ----------------------------
print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True
)

# Ensure padding is defined
tokenizer.pad_token = tokenizer.eos_token
tokenizer.model_max_length = 1024
tokenizer.model_max_length = MAX_SEQ_LENGTH

print("Tokenizer loaded and configured.")
print("Tokenizer loaded.")
print(f"Pad token id: {tokenizer.pad_token_id}")
print(f"Max sequence length: {tokenizer.model_max_length}")

# ----------------------------
# [2/7] Model loading (QLoRA)
# ----------------------------
print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (QLoRA)...")
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
load_in_4bit=True,
device_map="auto",
torch_dtype=torch.float16, # weights in fp16, gradients fp32
dtype=torch.float16,
trust_remote_code=True,
)
print("Model loaded.")

# ----------------------------
# [3/7] Prepare model for k-bit training
# ----------------------------
print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
model = prepare_model_for_kbit_training(model)

# Fix future PyTorch checkpointing behavior
model.gradient_checkpointing_enable(
gradient_checkpointing_kwargs={"use_reentrant": False}
)

print("Model prepared for k-bit training.")
print("Gradient checkpointing enabled (non-reentrant).")

# ----------------------------
# LoRA configuration
# [4/7] LoRA configuration
# ----------------------------
print(f"{80 * '_'}\n[4/7] Configuring LoRA adapters...")
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
r=32,
lora_alpha=64,
lora_dropout=0.02,
bias="none",
task_type="CAUSAL_LM",
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
],

)

model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
print("LoRA adapters attached.")

print("LoRA adapters successfully attached.")

# ----------------------------
# Dataset loading
# [5/7] Dataset loading & formatting
# ----------------------------
print(f"{80 * '_'}\n[5/7] Loading dataset from JSON file...")
dataset = load_dataset(
"json",
data_files="paires.json"
data_files=DATA_FILE
)

print(f"Dataset loaded with {len(dataset['train'])} samples.")
@@ -96,12 +107,15 @@ print(f"Dataset loaded with {len(dataset['train'])} samples.")
print("Formatting dataset for Ukrainian → French translation...")

def format_prompt(example):
prompt = (
"Translate the following Ukrainian text into French.\n\n"
f"Ukrainian: {example['text']}\n"
f"French: {example['translation']}"
)
return {"text": prompt}
return {
"text": (
"<|user|>\n"
"Translate the following Ukrainian text into French.\n"
f"Ukrainian: {example['text']}\n"
"<|assistant|>\n"
f"{example['translation']}"
)
}

dataset = dataset.map(
format_prompt,
@@ -109,27 +123,31 @@ dataset = dataset.map(
)

print("Dataset formatting completed.")
print(f"Example prompt:\n{dataset['train'][0]['text']}")

# ----------------------------
# Training arguments (AMP OFF)
# [6/7] Training arguments
# ----------------------------
print(f"{80 * '_'}\n[6/7] Initializing training arguments...")
training_args = TrainingArguments(
output_dir="./qwen2.5-7b-uk-fr-lora",
output_dir=OUTPUT_DIR,
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
learning_rate=2e-4,
num_train_epochs=2, # 2 epochs usually enough for translation
learning_rate=1e-4,
num_train_epochs=3,
fp16=False,
bf16=False,
optim="paged_adamw_32bit",
logging_steps=10,
save_steps=500,
save_total_limit=2,
optim="paged_adamw_32bit",
report_to="none",
)

print("Training arguments ready.")
print(f"Output directory: {OUTPUT_DIR}")
print(f"Epochs: {training_args.num_train_epochs}")
print(f"Effective batch size: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}")

# ----------------------------
# Trainer
@@ -138,27 +156,30 @@ print("Initializing SFTTrainer...")
trainer = SFTTrainer(
model=model,
train_dataset=dataset["train"],
processing_class=tokenizer,
tokenizer=tokenizer,
args=training_args,
)
print("Trainer initialized.")

# ----------------------------
# Train
# [7/7] Training
# ----------------------------
print(f"{80 * '_'}\n[7/7] Starting training...")
try:
trainer.train(resume_from_checkpoint=True)
except:
except Exception as e:
print("No checkpoint found or resume failed, starting fresh training.")
print(f"Reason: {e}")
trainer.train()

print("Training completed successfully.")

# ----------------------------
# Save LoRA adapter
# ----------------------------
print("Saving LoRA adapter and tokenizer...")
trainer.model.save_pretrained("./qwen2.5-7b-uk-fr-lora")
tokenizer.save_pretrained("./qwen2.5-7b-uk-fr-lora")
print(f"{80 * '_'}\nSaving LoRA adapter and tokenizer...")
trainer.model.save_pretrained(OUTPUT_DIR)
tokenizer.save_pretrained(OUTPUT_DIR)

print("=== Fine-tuning finished ===")
print("LoRA adapter saved in ./qwen2.5-7b-uk-fr-lora")
print("\n=== Fine-tuning finished ===")
print(f"LoRA adapter saved in: {OUTPUT_DIR}")

+ 8
- 2
README.md 파일 보기

@@ -89,9 +89,11 @@ Le principe est le suivant :
```
1️⃣ Dataset d’entraînement (pairs.json)
1️⃣ Dataset nettoyé ( cleanDataSet.py -> pairs_clean.json)
2️⃣ Fine-tuning LoRA (finetuning.py)
3️⃣ Validation / Évaluation (validation.py)
3️⃣ Validation / Évaluation BLEU (validation.py)
4️⃣ Merge LoRA + modèle de base (mergeLora.py)
@@ -100,6 +102,10 @@ Le principe est le suivant :
6️⃣ Ollama (inférence finale)

```

### Nettoyage du dataset
Executer le script ```python cleanDataSet.py```

### Validation
Executer le script ```python validation.py```

@@ -111,7 +117,7 @@ Il faut ensuite copier ce prompt dans le fichier ModelFile.
Executer le script ```python mergeLora.py```

### Conversion en GGUF
En étant à la racine du projet (et toujorus dans le venv), cloner le projet llama.cpp
En étant à la racine du projet (et toujours dans le venv), cloner le projet llama.cpp
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

Loading…
취소
저장