|
|
|
@ -1,3 +1,4 @@ |
|
|
|
import os |
|
|
|
import torch |
|
|
|
from datasets import load_dataset |
|
|
|
from transformers import ( |
|
|
|
@ -11,15 +12,18 @@ from peft import ( |
|
|
|
prepare_model_for_kbit_training, |
|
|
|
) |
|
|
|
from trl import SFTTrainer |
|
|
|
import os |
|
|
|
|
|
|
|
# ---------------------------- |
|
|
|
# Environment safety (Windows) |
|
|
|
# ---------------------------- |
|
|
|
os.environ["TORCHDYNAMO_DISABLE"] = "1" |
|
|
|
|
|
|
|
# ---------------------------- |
|
|
|
# Model configuration |
|
|
|
# ---------------------------- |
|
|
|
MODEL_NAME = "Qwen/Qwen2.5-14B-Instruct" |
|
|
|
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct" |
|
|
|
|
|
|
|
print("=== Starting fine-tuning script ===") |
|
|
|
print(f"=== Starting fine-tuning script {MODEL_NAME} ===") |
|
|
|
|
|
|
|
print(f"{80 * '_'}\n[1/7] Loading tokenizer...") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
|
@ -27,7 +31,7 @@ tokenizer = AutoTokenizer.from_pretrained( |
|
|
|
trust_remote_code=True |
|
|
|
) |
|
|
|
|
|
|
|
# Ensure padding token is defined |
|
|
|
# Ensure padding is defined |
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
tokenizer.model_max_length = 1024 |
|
|
|
|
|
|
|
@ -38,13 +42,19 @@ model = AutoModelForCausalLM.from_pretrained( |
|
|
|
MODEL_NAME, |
|
|
|
load_in_4bit=True, |
|
|
|
device_map="auto", |
|
|
|
torch_dtype=torch.float16, # OK for weights |
|
|
|
torch_dtype=torch.float16, # weights in fp16, gradients fp32 |
|
|
|
trust_remote_code=True, |
|
|
|
) |
|
|
|
print("Model loaded.") |
|
|
|
|
|
|
|
print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...") |
|
|
|
model = prepare_model_for_kbit_training(model) |
|
|
|
|
|
|
|
# Fix future PyTorch checkpointing behavior |
|
|
|
model.gradient_checkpointing_enable( |
|
|
|
gradient_checkpointing_kwargs={"use_reentrant": False} |
|
|
|
) |
|
|
|
|
|
|
|
print("Model prepared for k-bit training.") |
|
|
|
|
|
|
|
# ---------------------------- |
|
|
|
@ -70,7 +80,7 @@ lora_config = LoraConfig( |
|
|
|
|
|
|
|
model = get_peft_model(model, lora_config) |
|
|
|
model.print_trainable_parameters() |
|
|
|
print("LoRA adapters attached to the model.") |
|
|
|
print("LoRA adapters attached.") |
|
|
|
|
|
|
|
# ---------------------------- |
|
|
|
# Dataset loading |
|
|
|
@ -80,6 +90,7 @@ dataset = load_dataset( |
|
|
|
"json", |
|
|
|
data_files="traductions.json" |
|
|
|
) |
|
|
|
|
|
|
|
print(f"Dataset loaded with {len(dataset['train'])} samples.") |
|
|
|
|
|
|
|
print("Formatting dataset for Ukrainian → French translation...") |
|
|
|
@ -92,34 +103,32 @@ def format_prompt(example): |
|
|
|
) |
|
|
|
return {"text": prompt} |
|
|
|
|
|
|
|
dataset = dataset.map(format_prompt, remove_columns=dataset["train"].column_names) |
|
|
|
dataset = dataset.map( |
|
|
|
format_prompt, |
|
|
|
remove_columns=dataset["train"].column_names |
|
|
|
) |
|
|
|
|
|
|
|
print("Dataset formatting completed.") |
|
|
|
|
|
|
|
# ---------------------------- |
|
|
|
# Training arguments |
|
|
|
# Training arguments (AMP OFF) |
|
|
|
# ---------------------------- |
|
|
|
print(f"{80 * '_'}\n[6/7] Initializing training arguments...") |
|
|
|
training_args = TrainingArguments( |
|
|
|
output_dir="./qwen-uk-fr-lora", |
|
|
|
output_dir="./qwen2.5-7b-uk-fr-lora", |
|
|
|
per_device_train_batch_size=1, |
|
|
|
gradient_accumulation_steps=8, |
|
|
|
learning_rate=2e-4, |
|
|
|
num_train_epochs=3, |
|
|
|
|
|
|
|
num_train_epochs=2, # 2 epochs usually enough for translation |
|
|
|
fp16=False, |
|
|
|
bf16=False, |
|
|
|
|
|
|
|
logging_steps=10, |
|
|
|
save_steps=500, |
|
|
|
save_total_limit=2, |
|
|
|
|
|
|
|
# Use 32-bit optimizer |
|
|
|
optim="paged_adamw_32bit", |
|
|
|
|
|
|
|
report_to="none", |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
print("Training arguments ready.") |
|
|
|
|
|
|
|
# ---------------------------- |
|
|
|
@ -138,15 +147,15 @@ print("Trainer initialized.") |
|
|
|
# Train |
|
|
|
# ---------------------------- |
|
|
|
print(f"{80 * '_'}\n[7/7] Starting training...") |
|
|
|
trainer.train() |
|
|
|
trainer.train(resume_from_checkpoint=True) |
|
|
|
print("Training completed successfully.") |
|
|
|
|
|
|
|
# ---------------------------- |
|
|
|
# Save LoRA adapter |
|
|
|
# ---------------------------- |
|
|
|
print("Saving LoRA adapter and tokenizer...") |
|
|
|
trainer.model.save_pretrained("./qwen-uk-fr-lora") |
|
|
|
tokenizer.save_pretrained("./qwen-uk-fr-lora") |
|
|
|
trainer.model.save_pretrained("./qwen2.5-7b-uk-fr-lora") |
|
|
|
tokenizer.save_pretrained("./qwen2.5-7b-uk-fr-lora") |
|
|
|
|
|
|
|
print("=== Fine-tuning finished ===") |
|
|
|
print("LoRA adapter saved in ./qwen-uk-fr-lora") |
|
|
|
print("LoRA adapter saved in ./qwen2.5-7b-uk-fr-lora") |