python.traduction/Finetunning/finetunning.py

211 lines
6.3 KiB
Python

import os
import torch
from datasets import load_dataset
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
BitsAndBytesConfig,
)
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_kbit_training,
)
from trl import SFTTrainer
# ----------------------------
# Environment safety (Windows + AMP fixes)
# ----------------------------
os.environ["TORCHDYNAMO_DISABLE"] = "1"
os.environ["ACCELERATE_MIXED_PRECISION"] = "no" # ✅ disable AMP completely
os.environ["TORCH_AMP_DISABLE"] = "1" # ✅ disable GradScaler
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # optional: force first GPU
# ----------------------------
# Global configuration
# ----------------------------
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
OUTPUT_DIR = "./qwen2.5-7b-uk-fr-lora"
DATA_FILE = "paires_clean.json"
MAX_SEQ_LENGTH = 512 # Reduce for RTX 4080 SUPER VRAM
print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n")
# ----------------------------
# [1/7] Tokenizer
# ----------------------------
print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.model_max_length = MAX_SEQ_LENGTH
print("Tokenizer loaded.")
print(f"Pad token id: {tokenizer.pad_token_id}")
print(f"Max sequence length: {tokenizer.model_max_length}")
# ----------------------------
# [2/7] Load model in 4-bit (QLoRA)
# ----------------------------
print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (QLoRA)...")
assert torch.cuda.is_available(), "CUDA GPU not detected!"
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16, # fp16 internally
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
quantization_config=bnb_config,
low_cpu_mem_usage=True,
trust_remote_code=True,
)
# Align model tokens with tokenizer
model.config.pad_token_id = tokenizer.pad_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
print("Model loaded successfully in 4-bit mode on GPU.")
# ----------------------------
# [3/7] Prepare model for k-bit training
# ----------------------------
print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
model = prepare_model_for_kbit_training(model)
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
model.config.use_cache = False # Important with gradient checkpointing + QLoRA
print("Model prepared for k-bit training.")
# ----------------------------
# [4/7] LoRA configuration
# ----------------------------
print(f"{80 * '_'}\n[4/7] Configuring LoRA adapters...")
lora_config = LoraConfig(
r=32,
lora_alpha=64,
lora_dropout=0.02,
bias="none",
task_type="CAUSAL_LM",
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
print("LoRA adapters successfully attached.")
# ----------------------------
# [5/7] Dataset loading & formatting
# ----------------------------
print(f"{80 * '_'}\n[5/7] Loading dataset from JSON file...")
dataset = load_dataset("json", data_files=DATA_FILE)
print(f"Dataset loaded with {len(dataset['train'])} samples.")
print("Formatting dataset for Ukrainian → French translation...")
def format_prompt(example):
return {
"text": (
"<|im_start|>user\n"
"Translate the following Ukrainian text into French.\n"
f"Ukrainian: {example['text']}\n"
"<|im_end|>\n"
"<|im_start|>assistant\n"
f"{example['translation']}"
"<|im_end|>"
)
}
dataset = dataset.map(
format_prompt,
remove_columns=dataset["train"].column_names
)
print("Dataset formatting completed.")
print("Example prompt:\n")
print(dataset["train"][0]["text"])
# ----------------------------
# [6/7] Training arguments
# ----------------------------
print(f"{80 * '_'}\n[6/7] Initializing training arguments...")
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
per_device_train_batch_size=1,
gradient_accumulation_steps=16,
learning_rate=1e-4,
num_train_epochs=2,
max_steps=1000,
fp16=False, # ⚠ disable AMP
bf16=False, # ⚠ disable BF16
optim="paged_adamw_32bit",
logging_steps=10,
save_steps=500,
save_total_limit=2,
report_to="none",
dataloader_pin_memory=False,
max_grad_norm=0.0, # avoid AMP gradient clipping
)
print("Training arguments ready.")
print(f"Output directory: {OUTPUT_DIR}")
print(f"Epochs: {training_args.num_train_epochs}")
print(f"Effective batch size: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}")
# ----------------------------
# [7/7] Trainer
# ----------------------------
print(f"{80 * '_'}\nInitializing SFTTrainer...")
trainer = SFTTrainer(
model=model,
train_dataset=dataset["train"],
args=training_args,
)
print("Trainer initialized.")
# ----------------------------
# Training
# ----------------------------
print(f"{80 * '_'}\nStarting training...")
checkpoint_exists = False
if os.path.exists(OUTPUT_DIR):
checkpoint_exists = any(
d.startswith("checkpoint-")
for d in os.listdir(OUTPUT_DIR)
)
if checkpoint_exists:
print("Checkpoint found → resuming training")
train_output = trainer.train(resume_from_checkpoint=True)
else:
print("No checkpoint found → starting fresh training")
train_output = trainer.train()
print("\n=== Training summary ===")
print(f"Global steps: {train_output.global_step}")
print(f"Training loss: {train_output.training_loss}")
print(f"Metrics: {train_output.metrics}")
print("Training completed successfully.")
# ----------------------------
# Save LoRA adapter and tokenizer
# ----------------------------
print(f"{80 * '_'}\nSaving LoRA adapter and tokenizer...")
trainer.model.save_pretrained(OUTPUT_DIR)
tokenizer.save_pretrained(OUTPUT_DIR)
print("\n=== Fine-tuning finished ===")
print(f"LoRA adapter saved in: {OUTPUT_DIR}")