Script python permettant de traduire un long texte
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. import os
  2. import torch
  3. from datasets import load_dataset
  4. from transformers import (
  5. AutoTokenizer,
  6. AutoModelForCausalLM,
  7. TrainingArguments,
  8. BitsAndBytesConfig,
  9. )
  10. from peft import (
  11. LoraConfig,
  12. get_peft_model,
  13. prepare_model_for_kbit_training,
  14. )
  15. from trl import SFTTrainer
  16. # ----------------------------
  17. # Environment safety (Windows)
  18. # ----------------------------
  19. os.environ["TORCHDYNAMO_DISABLE"] = "1"
  20. # ----------------------------
  21. # Global configuration
  22. # ----------------------------
  23. MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
  24. OUTPUT_DIR = "./qwen2.5-7b-uk-fr-lora"
  25. DATA_FILE = "paires_clean.json"
  26. MAX_SEQ_LENGTH = 1024
  27. print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n")
  28. # ----------------------------
  29. # [1/7] Tokenizer
  30. # ----------------------------
  31. print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
  32. tokenizer = AutoTokenizer.from_pretrained(
  33. MODEL_NAME,
  34. trust_remote_code=True
  35. )
  36. tokenizer.pad_token = tokenizer.eos_token
  37. tokenizer.model_max_length = MAX_SEQ_LENGTH
  38. print("Tokenizer loaded.")
  39. print(f"Pad token id: {tokenizer.pad_token_id}")
  40. print(f"Max sequence length: {tokenizer.model_max_length}")
  41. # ----------------------------
  42. # [2/7] Quantization config (QLoRA)
  43. # ----------------------------
  44. print(f"{80 * '_'}\n[2/7] Configuring 4-bit quantization (BitsAndBytes)...")
  45. bnb_config = BitsAndBytesConfig(
  46. load_in_4bit=True,
  47. bnb_4bit_quant_type="nf4",
  48. bnb_4bit_compute_dtype=torch.float16,
  49. bnb_4bit_use_double_quant=True,
  50. )
  51. print("4-bit NF4 quantization configured.")
  52. print("Loading model...")
  53. model = AutoModelForCausalLM.from_pretrained(
  54. MODEL_NAME,
  55. device_map="auto",
  56. quantization_config=bnb_config,
  57. dtype=torch.float16,
  58. trust_remote_code=True,
  59. )
  60. print("Model loaded successfully.")
  61. # ----------------------------
  62. # [3/7] Prepare model for k-bit training
  63. # ----------------------------
  64. print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
  65. model = prepare_model_for_kbit_training(model)
  66. model.gradient_checkpointing_enable(
  67. gradient_checkpointing_kwargs={"use_reentrant": False}
  68. )
  69. print("Model prepared for k-bit training.")
  70. print("Gradient checkpointing enabled (non-reentrant).")
  71. # ----------------------------
  72. # [4/7] LoRA configuration
  73. # ----------------------------
  74. print(f"{80 * '_'}\n[4/7] Configuring LoRA adapters...")
  75. lora_config = LoraConfig(
  76. r=32,
  77. lora_alpha=64,
  78. lora_dropout=0.02,
  79. bias="none",
  80. task_type="CAUSAL_LM",
  81. target_modules=[
  82. "q_proj",
  83. "k_proj",
  84. "v_proj",
  85. "o_proj",
  86. "gate_proj",
  87. "up_proj",
  88. "down_proj",
  89. ],
  90. )
  91. model = get_peft_model(model, lora_config)
  92. model.print_trainable_parameters()
  93. print("LoRA adapters successfully attached.")
  94. # ----------------------------
  95. # [5/7] Dataset loading & formatting
  96. # ----------------------------
  97. print(f"{80 * '_'}\n[5/7] Loading dataset from JSON file...")
  98. dataset = load_dataset("json", data_files=DATA_FILE)
  99. print(f"Dataset loaded with {len(dataset['train'])} samples.")
  100. print("Formatting dataset for Ukrainian → French translation...")
  101. def format_prompt(example):
  102. return {
  103. "text": (
  104. "<|user|>\n"
  105. "Translate the following Ukrainian text into French.\n"
  106. f"Ukrainian: {example['text']}\n"
  107. "<|assistant|>\n"
  108. f"{example['translation']}"
  109. )
  110. }
  111. dataset = dataset.map(
  112. format_prompt,
  113. remove_columns=dataset["train"].column_names
  114. )
  115. print("Dataset formatting completed.")
  116. print("Example prompt:\n")
  117. print(dataset["train"][0]["text"])
  118. # ----------------------------
  119. # [6/7] Training arguments
  120. # ----------------------------
  121. print(f"{80 * '_'}\n[6/7] Initializing training arguments...")
  122. training_args = TrainingArguments(
  123. output_dir=OUTPUT_DIR,
  124. per_device_train_batch_size=1,
  125. gradient_accumulation_steps=8,
  126. learning_rate=1e-4,
  127. num_train_epochs=3,
  128. fp16=False,
  129. bf16=False,
  130. optim="paged_adamw_32bit",
  131. logging_steps=10,
  132. save_steps=500,
  133. save_total_limit=2,
  134. report_to="none",
  135. )
  136. print("Training arguments ready.")
  137. print(f"Output directory: {OUTPUT_DIR}")
  138. print(f"Epochs: {training_args.num_train_epochs}")
  139. print(
  140. f"Effective batch size: "
  141. f"{training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}"
  142. )
  143. # ----------------------------
  144. # Trainer
  145. # ----------------------------
  146. print("Initializing SFTTrainer...")
  147. trainer = SFTTrainer(
  148. model=model,
  149. train_dataset=dataset["train"],
  150. tokenizer=tokenizer,
  151. args=training_args,
  152. )
  153. print("Trainer initialized.")
  154. # ----------------------------
  155. # [7/7] Training
  156. # ----------------------------
  157. print(f"{80 * '_'}\n[7/7] Starting training...")
  158. try:
  159. trainer.train(resume_from_checkpoint=True)
  160. except Exception as e:
  161. print("No checkpoint found or resume failed, starting fresh training.")
  162. print(f"Reason: {e}")
  163. trainer.train()
  164. print("Training completed successfully.")
  165. # ----------------------------
  166. # Save LoRA adapter
  167. # ----------------------------
  168. print(f"{80 * '_'}\nSaving LoRA adapter and tokenizer...")
  169. trainer.model.save_pretrained(OUTPUT_DIR)
  170. tokenizer.save_pretrained(OUTPUT_DIR)
  171. print("\n=== Fine-tuning finished ===")
  172. print(f"LoRA adapter saved in: {OUTPUT_DIR}")