Browse Source

version fonctionnelle

main
Alex 6 days ago
parent
commit
d5313fb143
3 changed files with 9391 additions and 44 deletions
  1. 41
    43
      Finetunning/finetunning.py
  2. 9349
    0
      Finetunning/paires_clean.json
  3. 1
    1
      README.md

+ 41
- 43
Finetunning/finetunning.py View File

from trl import SFTTrainer from trl import SFTTrainer


# ---------------------------- # ----------------------------
# Environment safety (Windows)
# Environment safety (Windows + AMP fixes)
# ---------------------------- # ----------------------------
os.environ["TORCHDYNAMO_DISABLE"] = "1" os.environ["TORCHDYNAMO_DISABLE"] = "1"
os.environ["ACCELERATE_MIXED_PRECISION"] = "no" # ✅ disable AMP completely
os.environ["TORCH_AMP_DISABLE"] = "1" # ✅ disable GradScaler
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # optional: force first GPU


# ---------------------------- # ----------------------------
# Global configuration # Global configuration
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct" MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
OUTPUT_DIR = "./qwen2.5-7b-uk-fr-lora" OUTPUT_DIR = "./qwen2.5-7b-uk-fr-lora"
DATA_FILE = "paires_clean.json" DATA_FILE = "paires_clean.json"
MAX_SEQ_LENGTH = 1024
MAX_SEQ_LENGTH = 512 # Reduce for RTX 4080 SUPER VRAM


print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n") print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n")


print(f"{80 * '_'}\n[1/7] Loading tokenizer...") print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, MODEL_NAME,
trust_remote_code=True
trust_remote_code=True,
) )

tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token = tokenizer.eos_token
tokenizer.model_max_length = MAX_SEQ_LENGTH tokenizer.model_max_length = MAX_SEQ_LENGTH

print("Tokenizer loaded.") print("Tokenizer loaded.")
print(f"Pad token id: {tokenizer.pad_token_id}") print(f"Pad token id: {tokenizer.pad_token_id}")
print(f"Max sequence length: {tokenizer.model_max_length}") print(f"Max sequence length: {tokenizer.model_max_length}")


# ---------------------------- # ----------------------------
# [2/7] Quantization config (QLoRA)
# [2/7] Load model in 4-bit (QLoRA)
# ---------------------------- # ----------------------------
print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (optimized QLoRA)...")

print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (QLoRA)...")
assert torch.cuda.is_available(), "CUDA GPU not detected!" assert torch.cuda.is_available(), "CUDA GPU not detected!"
print(f"Using GPU: {torch.cuda.get_device_name(0)}") print(f"Using GPU: {torch.cuda.get_device_name(0)}")


bnb_config = BitsAndBytesConfig( bnb_config = BitsAndBytesConfig(
load_in_4bit=True, load_in_4bit=True,
bnb_4bit_quant_type="nf4", bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_compute_dtype=torch.float16, # fp16 internally
bnb_4bit_use_double_quant=True, bnb_4bit_use_double_quant=True,
) )


model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, MODEL_NAME,
device_map="cuda", # 🔥 SAFE
device_map="auto",
quantization_config=bnb_config, quantization_config=bnb_config,
low_cpu_mem_usage=True, low_cpu_mem_usage=True,
trust_remote_code=True, trust_remote_code=True,
) )


# Align model tokens with tokenizer
model.config.pad_token_id = tokenizer.pad_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
print("Model loaded successfully in 4-bit mode on GPU.") print("Model loaded successfully in 4-bit mode on GPU.")



# ---------------------------- # ----------------------------
# [3/7] Prepare model for k-bit training # [3/7] Prepare model for k-bit training
# ---------------------------- # ----------------------------
print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...") print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
model = prepare_model_for_kbit_training(model) model = prepare_model_for_kbit_training(model)

model.gradient_checkpointing_enable(
gradient_checkpointing_kwargs={"use_reentrant": False}
)

model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
model.config.use_cache = False # Important with gradient checkpointing + QLoRA
print("Model prepared for k-bit training.") print("Model prepared for k-bit training.")
print("Gradient checkpointing enabled (non-reentrant).")


# ---------------------------- # ----------------------------
# [4/7] LoRA configuration # [4/7] LoRA configuration
"down_proj", "down_proj",
], ],
) )

model = get_peft_model(model, lora_config) model = get_peft_model(model, lora_config)
model.print_trainable_parameters() model.print_trainable_parameters()

print("LoRA adapters successfully attached.") print("LoRA adapters successfully attached.")


# ---------------------------- # ----------------------------
# ---------------------------- # ----------------------------
print(f"{80 * '_'}\n[5/7] Loading dataset from JSON file...") print(f"{80 * '_'}\n[5/7] Loading dataset from JSON file...")
dataset = load_dataset("json", data_files=DATA_FILE) dataset = load_dataset("json", data_files=DATA_FILE)

print(f"Dataset loaded with {len(dataset['train'])} samples.") print(f"Dataset loaded with {len(dataset['train'])} samples.")


print("Formatting dataset for Ukrainian → French translation...") print("Formatting dataset for Ukrainian → French translation...")

def format_prompt(example): def format_prompt(example):
return { return {
"text": ("<|user|>\n"
"text": (
"<|im_start|>user\n"
"Translate the following Ukrainian text into French.\n" "Translate the following Ukrainian text into French.\n"
f"Ukrainian: {example['text']}\n" f"Ukrainian: {example['text']}\n"
"<|assistant|>\n"
"<|im_end|>\n"
"<|im_start|>assistant\n"
f"{example['translation']}" f"{example['translation']}"
"<|im_end|>"
) )
} }


format_prompt, format_prompt,
remove_columns=dataset["train"].column_names remove_columns=dataset["train"].column_names
) )

print("Dataset formatting completed.") print("Dataset formatting completed.")
print("Example prompt:\n") print("Example prompt:\n")
print(dataset["train"][0]["text"]) print(dataset["train"][0]["text"])
training_args = TrainingArguments( training_args = TrainingArguments(
output_dir=OUTPUT_DIR, output_dir=OUTPUT_DIR,
per_device_train_batch_size=1, per_device_train_batch_size=1,
gradient_accumulation_steps=8,
gradient_accumulation_steps=16,
learning_rate=1e-4, learning_rate=1e-4,
num_train_epochs=3, num_train_epochs=3,
fp16=False,
bf16=False,
max_steps=1000,

fp16=False, # ⚠ disable AMP
bf16=False, # ⚠ disable BF16

optim="paged_adamw_32bit", optim="paged_adamw_32bit",
logging_steps=10, logging_steps=10,
save_steps=500, save_steps=500,
save_total_limit=2, save_total_limit=2,
report_to="none", report_to="none",

dataloader_pin_memory=False, dataloader_pin_memory=False,
max_grad_norm=0.0, # avoid AMP gradient clipping
) )

print("Training arguments ready.") print("Training arguments ready.")
print(f"Output directory: {OUTPUT_DIR}") print(f"Output directory: {OUTPUT_DIR}")
print(f"Epochs: {training_args.num_train_epochs}") print(f"Epochs: {training_args.num_train_epochs}")
print(f"Effective batch size: "
f"{training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}"
)
print(f"Effective batch size: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}")


# ---------------------------- # ----------------------------
# Trainer
# [7/7] Trainer
# ---------------------------- # ----------------------------
print("Initializing SFTTrainer...")
print(f"{80 * '_'}\nInitializing SFTTrainer...")
trainer = SFTTrainer( trainer = SFTTrainer(
model=model, model=model,
train_dataset=dataset["train"], train_dataset=dataset["train"],
processing_class=tokenizer,
args=training_args, args=training_args,
) )
print("Trainer initialized.") print("Trainer initialized.")


# ---------------------------- # ----------------------------
# [7/7] Training
# Training
# ---------------------------- # ----------------------------
print(f"{80 * '_'}\n[7/7] Starting training...")
checkpoint_exists = any(
d.startswith("checkpoint-")
for d in os.listdir(OUTPUT_DIR)
) if os.path.exists(OUTPUT_DIR) else False
print(f"{80 * '_'}\nStarting training...")
checkpoint_exists = False
if os.path.exists(OUTPUT_DIR):
checkpoint_exists = any(
d.startswith("checkpoint-")
for d in os.listdir(OUTPUT_DIR)
)


if checkpoint_exists: if checkpoint_exists:
print("Checkpoint found → resuming training") print("Checkpoint found → resuming training")
print("No checkpoint found → starting fresh training") print("No checkpoint found → starting fresh training")
train_output = trainer.train() train_output = trainer.train()



print("\n=== Training summary ===") print("\n=== Training summary ===")
print(f"Global steps: {train_output.global_step}") print(f"Global steps: {train_output.global_step}")
print(f"Training loss: {train_output.training_loss}") print(f"Training loss: {train_output.training_loss}")
print("Training completed successfully.") print("Training completed successfully.")


# ---------------------------- # ----------------------------
# Save LoRA adapter
# Save LoRA adapter and tokenizer
# ---------------------------- # ----------------------------
print(f"{80 * '_'}\nSaving LoRA adapter and tokenizer...") print(f"{80 * '_'}\nSaving LoRA adapter and tokenizer...")
trainer.model.save_pretrained(OUTPUT_DIR) trainer.model.save_pretrained(OUTPUT_DIR)
tokenizer.save_pretrained(OUTPUT_DIR) tokenizer.save_pretrained(OUTPUT_DIR)

print("\n=== Fine-tuning finished ===") print("\n=== Fine-tuning finished ===")
print(f"LoRA adapter saved in: {OUTPUT_DIR}") print(f"LoRA adapter saved in: {OUTPUT_DIR}")

+ 9349
- 0
Finetunning/paires_clean.json
File diff suppressed because it is too large
View File


+ 1
- 1
README.md View File



Puis faire : Puis faire :
```bash ```bash
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
``` ```


3. **Placer votre fichier PDF** dans le répertoire `Traduction` du projet avec le nom configuré dans `main.py` (par défaut : `TaniaBorecMemoir(Ukr).pdf`) 3. **Placer votre fichier PDF** dans le répertoire `Traduction` du projet avec le nom configuré dans `main.py` (par défaut : `TaniaBorecMemoir(Ukr).pdf`)

Loading…
Cancel
Save