Browse Source

version fonctionnelle

main
Alex 6 days ago
parent
commit
d5313fb143
3 changed files with 9391 additions and 44 deletions
  1. 41
    43
      Finetunning/finetunning.py
  2. 9349
    0
      Finetunning/paires_clean.json
  3. 1
    1
      README.md

+ 41
- 43
Finetunning/finetunning.py View File

@@ -15,9 +15,12 @@ from peft import (
from trl import SFTTrainer

# ----------------------------
# Environment safety (Windows)
# Environment safety (Windows + AMP fixes)
# ----------------------------
os.environ["TORCHDYNAMO_DISABLE"] = "1"
os.environ["ACCELERATE_MIXED_PRECISION"] = "no" # ✅ disable AMP completely
os.environ["TORCH_AMP_DISABLE"] = "1" # ✅ disable GradScaler
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # optional: force first GPU

# ----------------------------
# Global configuration
@@ -25,7 +28,7 @@ os.environ["TORCHDYNAMO_DISABLE"] = "1"
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
OUTPUT_DIR = "./qwen2.5-7b-uk-fr-lora"
DATA_FILE = "paires_clean.json"
MAX_SEQ_LENGTH = 1024
MAX_SEQ_LENGTH = 512 # Reduce for RTX 4080 SUPER VRAM

print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n")

@@ -35,54 +38,50 @@ print(f"\n=== Starting fine-tuning script for {MODEL_NAME} ===\n")
print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True
trust_remote_code=True,
)

tokenizer.pad_token = tokenizer.eos_token
tokenizer.model_max_length = MAX_SEQ_LENGTH

print("Tokenizer loaded.")
print(f"Pad token id: {tokenizer.pad_token_id}")
print(f"Max sequence length: {tokenizer.model_max_length}")

# ----------------------------
# [2/7] Quantization config (QLoRA)
# [2/7] Load model in 4-bit (QLoRA)
# ----------------------------
print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (optimized QLoRA)...")

print(f"{80 * '_'}\n[2/7] Loading model in 4-bit mode (QLoRA)...")
assert torch.cuda.is_available(), "CUDA GPU not detected!"
print(f"Using GPU: {torch.cuda.get_device_name(0)}")

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_compute_dtype=torch.float16, # fp16 internally
bnb_4bit_use_double_quant=True,
)

model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="cuda", # 🔥 SAFE
device_map="auto",
quantization_config=bnb_config,
low_cpu_mem_usage=True,
trust_remote_code=True,
)

# Align model tokens with tokenizer
model.config.pad_token_id = tokenizer.pad_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
print("Model loaded successfully in 4-bit mode on GPU.")


# ----------------------------
# [3/7] Prepare model for k-bit training
# ----------------------------
print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
model = prepare_model_for_kbit_training(model)

model.gradient_checkpointing_enable(
gradient_checkpointing_kwargs={"use_reentrant": False}
)

model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
model.config.use_cache = False # Important with gradient checkpointing + QLoRA
print("Model prepared for k-bit training.")
print("Gradient checkpointing enabled (non-reentrant).")

# ----------------------------
# [4/7] LoRA configuration
@@ -104,10 +103,8 @@ lora_config = LoraConfig(
"down_proj",
],
)

model = get_peft_model(model, lora_config)
model.print_trainable_parameters()

print("LoRA adapters successfully attached.")

# ----------------------------
@@ -115,18 +112,19 @@ print("LoRA adapters successfully attached.")
# ----------------------------
print(f"{80 * '_'}\n[5/7] Loading dataset from JSON file...")
dataset = load_dataset("json", data_files=DATA_FILE)

print(f"Dataset loaded with {len(dataset['train'])} samples.")

print("Formatting dataset for Ukrainian → French translation...")

def format_prompt(example):
return {
"text": ("<|user|>\n"
"text": (
"<|im_start|>user\n"
"Translate the following Ukrainian text into French.\n"
f"Ukrainian: {example['text']}\n"
"<|assistant|>\n"
"<|im_end|>\n"
"<|im_start|>assistant\n"
f"{example['translation']}"
"<|im_end|>"
)
}

@@ -134,7 +132,6 @@ dataset = dataset.map(
format_prompt,
remove_columns=dataset["train"].column_names
)

print("Dataset formatting completed.")
print("Example prompt:\n")
print(dataset["train"][0]["text"])
@@ -146,46 +143,49 @@ print(f"{80 * '_'}\n[6/7] Initializing training arguments...")
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
gradient_accumulation_steps=16,
learning_rate=1e-4,
num_train_epochs=3,
fp16=False,
bf16=False,
max_steps=1000,

fp16=False, # ⚠ disable AMP
bf16=False, # ⚠ disable BF16

optim="paged_adamw_32bit",
logging_steps=10,
save_steps=500,
save_total_limit=2,
report_to="none",

dataloader_pin_memory=False,
max_grad_norm=0.0, # avoid AMP gradient clipping
)

print("Training arguments ready.")
print(f"Output directory: {OUTPUT_DIR}")
print(f"Epochs: {training_args.num_train_epochs}")
print(f"Effective batch size: "
f"{training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}"
)
print(f"Effective batch size: {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}")

# ----------------------------
# Trainer
# [7/7] Trainer
# ----------------------------
print("Initializing SFTTrainer...")
print(f"{80 * '_'}\nInitializing SFTTrainer...")
trainer = SFTTrainer(
model=model,
train_dataset=dataset["train"],
processing_class=tokenizer,
args=training_args,
)
print("Trainer initialized.")

# ----------------------------
# [7/7] Training
# Training
# ----------------------------
print(f"{80 * '_'}\n[7/7] Starting training...")
checkpoint_exists = any(
d.startswith("checkpoint-")
for d in os.listdir(OUTPUT_DIR)
) if os.path.exists(OUTPUT_DIR) else False
print(f"{80 * '_'}\nStarting training...")
checkpoint_exists = False
if os.path.exists(OUTPUT_DIR):
checkpoint_exists = any(
d.startswith("checkpoint-")
for d in os.listdir(OUTPUT_DIR)
)

if checkpoint_exists:
print("Checkpoint found → resuming training")
@@ -194,7 +194,6 @@ else:
print("No checkpoint found → starting fresh training")
train_output = trainer.train()


print("\n=== Training summary ===")
print(f"Global steps: {train_output.global_step}")
print(f"Training loss: {train_output.training_loss}")
@@ -202,11 +201,10 @@ print(f"Metrics: {train_output.metrics}")
print("Training completed successfully.")

# ----------------------------
# Save LoRA adapter
# Save LoRA adapter and tokenizer
# ----------------------------
print(f"{80 * '_'}\nSaving LoRA adapter and tokenizer...")
trainer.model.save_pretrained(OUTPUT_DIR)
tokenizer.save_pretrained(OUTPUT_DIR)

print("\n=== Fine-tuning finished ===")
print(f"LoRA adapter saved in: {OUTPUT_DIR}")

+ 9349
- 0
Finetunning/paires_clean.json
File diff suppressed because it is too large
View File


+ 1
- 1
README.md View File

@@ -27,7 +27,7 @@ pip install -r requirements.txt

Puis faire :
```bash
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
```

3. **Placer votre fichier PDF** dans le répertoire `Traduction` du projet avec le nom configuré dans `main.py` (par défaut : `TaniaBorecMemoir(Ukr).pdf`)

Loading…
Cancel
Save