autorise la reprise d'unentrainement
This commit is contained in:
parent
182e6e7a98
commit
4ed1ffa226
|
|
@ -1,3 +1,4 @@
|
||||||
|
import os
|
||||||
import torch
|
import torch
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import (
|
from transformers import (
|
||||||
|
|
@ -11,15 +12,18 @@ from peft import (
|
||||||
prepare_model_for_kbit_training,
|
prepare_model_for_kbit_training,
|
||||||
)
|
)
|
||||||
from trl import SFTTrainer
|
from trl import SFTTrainer
|
||||||
import os
|
|
||||||
|
# ----------------------------
|
||||||
|
# Environment safety (Windows)
|
||||||
|
# ----------------------------
|
||||||
os.environ["TORCHDYNAMO_DISABLE"] = "1"
|
os.environ["TORCHDYNAMO_DISABLE"] = "1"
|
||||||
|
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
# Model configuration
|
# Model configuration
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
MODEL_NAME = "Qwen/Qwen2.5-14B-Instruct"
|
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
|
||||||
|
|
||||||
print("=== Starting fine-tuning script ===")
|
print(f"=== Starting fine-tuning script {MODEL_NAME} ===")
|
||||||
|
|
||||||
print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
|
print(f"{80 * '_'}\n[1/7] Loading tokenizer...")
|
||||||
tokenizer = AutoTokenizer.from_pretrained(
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
|
@ -27,7 +31,7 @@ tokenizer = AutoTokenizer.from_pretrained(
|
||||||
trust_remote_code=True
|
trust_remote_code=True
|
||||||
)
|
)
|
||||||
|
|
||||||
# Ensure padding token is defined
|
# Ensure padding is defined
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
tokenizer.model_max_length = 1024
|
tokenizer.model_max_length = 1024
|
||||||
|
|
||||||
|
|
@ -38,13 +42,19 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||||
MODEL_NAME,
|
MODEL_NAME,
|
||||||
load_in_4bit=True,
|
load_in_4bit=True,
|
||||||
device_map="auto",
|
device_map="auto",
|
||||||
torch_dtype=torch.float16, # OK for weights
|
torch_dtype=torch.float16, # weights in fp16, gradients fp32
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
)
|
)
|
||||||
print("Model loaded.")
|
print("Model loaded.")
|
||||||
|
|
||||||
print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
|
print(f"{80 * '_'}\n[3/7] Preparing model for k-bit training...")
|
||||||
model = prepare_model_for_kbit_training(model)
|
model = prepare_model_for_kbit_training(model)
|
||||||
|
|
||||||
|
# Fix future PyTorch checkpointing behavior
|
||||||
|
model.gradient_checkpointing_enable(
|
||||||
|
gradient_checkpointing_kwargs={"use_reentrant": False}
|
||||||
|
)
|
||||||
|
|
||||||
print("Model prepared for k-bit training.")
|
print("Model prepared for k-bit training.")
|
||||||
|
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
|
|
@ -70,7 +80,7 @@ lora_config = LoraConfig(
|
||||||
|
|
||||||
model = get_peft_model(model, lora_config)
|
model = get_peft_model(model, lora_config)
|
||||||
model.print_trainable_parameters()
|
model.print_trainable_parameters()
|
||||||
print("LoRA adapters attached to the model.")
|
print("LoRA adapters attached.")
|
||||||
|
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
# Dataset loading
|
# Dataset loading
|
||||||
|
|
@ -80,6 +90,7 @@ dataset = load_dataset(
|
||||||
"json",
|
"json",
|
||||||
data_files="traductions.json"
|
data_files="traductions.json"
|
||||||
)
|
)
|
||||||
|
|
||||||
print(f"Dataset loaded with {len(dataset['train'])} samples.")
|
print(f"Dataset loaded with {len(dataset['train'])} samples.")
|
||||||
|
|
||||||
print("Formatting dataset for Ukrainian → French translation...")
|
print("Formatting dataset for Ukrainian → French translation...")
|
||||||
|
|
@ -92,34 +103,32 @@ def format_prompt(example):
|
||||||
)
|
)
|
||||||
return {"text": prompt}
|
return {"text": prompt}
|
||||||
|
|
||||||
dataset = dataset.map(format_prompt, remove_columns=dataset["train"].column_names)
|
dataset = dataset.map(
|
||||||
|
format_prompt,
|
||||||
|
remove_columns=dataset["train"].column_names
|
||||||
|
)
|
||||||
|
|
||||||
print("Dataset formatting completed.")
|
print("Dataset formatting completed.")
|
||||||
|
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
# Training arguments
|
# Training arguments (AMP OFF)
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
print(f"{80 * '_'}\n[6/7] Initializing training arguments...")
|
print(f"{80 * '_'}\n[6/7] Initializing training arguments...")
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./qwen-uk-fr-lora",
|
output_dir="./qwen2.5-7b-uk-fr-lora",
|
||||||
per_device_train_batch_size=1,
|
per_device_train_batch_size=1,
|
||||||
gradient_accumulation_steps=8,
|
gradient_accumulation_steps=8,
|
||||||
learning_rate=2e-4,
|
learning_rate=2e-4,
|
||||||
num_train_epochs=3,
|
num_train_epochs=2, # 2 epochs usually enough for translation
|
||||||
|
|
||||||
fp16=False,
|
fp16=False,
|
||||||
bf16=False,
|
bf16=False,
|
||||||
|
|
||||||
logging_steps=10,
|
logging_steps=10,
|
||||||
save_steps=500,
|
save_steps=500,
|
||||||
save_total_limit=2,
|
save_total_limit=2,
|
||||||
|
|
||||||
# Use 32-bit optimizer
|
|
||||||
optim="paged_adamw_32bit",
|
optim="paged_adamw_32bit",
|
||||||
|
|
||||||
report_to="none",
|
report_to="none",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
print("Training arguments ready.")
|
print("Training arguments ready.")
|
||||||
|
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
|
|
@ -138,15 +147,15 @@ print("Trainer initialized.")
|
||||||
# Train
|
# Train
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
print(f"{80 * '_'}\n[7/7] Starting training...")
|
print(f"{80 * '_'}\n[7/7] Starting training...")
|
||||||
trainer.train()
|
trainer.train(resume_from_checkpoint=True)
|
||||||
print("Training completed successfully.")
|
print("Training completed successfully.")
|
||||||
|
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
# Save LoRA adapter
|
# Save LoRA adapter
|
||||||
# ----------------------------
|
# ----------------------------
|
||||||
print("Saving LoRA adapter and tokenizer...")
|
print("Saving LoRA adapter and tokenizer...")
|
||||||
trainer.model.save_pretrained("./qwen-uk-fr-lora")
|
trainer.model.save_pretrained("./qwen2.5-7b-uk-fr-lora")
|
||||||
tokenizer.save_pretrained("./qwen-uk-fr-lora")
|
tokenizer.save_pretrained("./qwen2.5-7b-uk-fr-lora")
|
||||||
|
|
||||||
print("=== Fine-tuning finished ===")
|
print("=== Fine-tuning finished ===")
|
||||||
print("LoRA adapter saved in ./qwen-uk-fr-lora")
|
print("LoRA adapter saved in ./qwen2.5-7b-uk-fr-lora")
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue